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Figure 1. Example of low-frequency geometry, MF, HF facial details and the hierarchical representation.

Abstract
Limited by the nature of the low-dimensional represen-

tational capacity of 3DMM, most of the 3DMM-based face
reconstruction (FR) methods fail to recover high-frequency
facial details, such as wrinkles, dimples, etc. Some attempt
to solve the problem by introducing detail maps or non-
linear operations, however, the results are still not vivid.
To this end, we in this paper present a novel hierarchical
representation network (HRN) to achieve accurate and de-
tailed face reconstruction from a single image. Specifically,
we implement the geometry disentanglement and introduce
the hierarchical representation to fulfill detailed face mod-
eling. Meanwhile, 3D priors of facial details are incorpo-
rated to enhance the accuracy and authenticity of the recon-
struction results. We also propose a de-retouching module
to achieve better decoupling of the geometry and appear-
ance. It is noteworthy that our framework can be extended
to a multi-view fashion by considering detail consistency
of different views. Extensive experiments on two single-
view and two multi-view FR benchmarks demonstrate that
our method outperforms the existing methods in both recon-
struction accuracy and visual effects. Finally, we introduce
a high-quality 3D face dataset FaceHD-100 to boost the re-
search of high-fidelity face reconstruction.

1. Introduction
High-fidelity 3D face reconstruction finds a wide range

of applications in many scenarios, such as AR/VR, medical

treatment, film production, etc. While extensive works al-
ready achieved excellent reconstruction performance using
specialized hardware like LightStage [2, 10, 34], estimating
highly detailed face models from single or sparse-view im-
ages is still a challenging problem. Based on 3DMM [7],
a statistical model learned from a collection of face scans,
many works [15, 21, 22, 31] attempt to reconstruct the 3D
face from a single image and achieve impressive results.
However, limited by the nature of the low dimensional rep-
resentational ability of the 3DMM, these methods can not
recover the detailed facial geometry.

Recently, some methods [12, 23, 37] devote to capturing
high-frequency facial details such as wrinkles by predicting
a displacement map. They achieve realistic results, how-
ever, fail to model the mid-frequency details, such as the
detailed contour of the jaw, cheeck, etc. To this end, some
works try to capture the overall details by introducing latent
encoding of details [18] or non-linear operations [19, 43].
Nevertheless, it is hard to make a trade-off when handling
the mid- and high-frequency details simultaneously. An-
other challenge is how to obtain accurate shapes and de-
tailed 3D facial priors considering multifarious lightings
and skins for different images. [9, 12] resort to the wrin-
kle statistics computed from 3D face scans to fulfill realis-
tic high-frequency details, but still fail to model the mid-
frequency details.

Based on the observations above, we introduce a hierar-
chical representation network (HRN) for accurate and de-
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tailed face reconstruction from single image, as shown in
Fig. 2. Firstly, we decouple the facial geometry into low-
frequency geometry, mid-frequency (MF) details, and high-
frequency (HF) details. Then, in a hierarchical fashion, we
model these parts with face-wise blendshape coefficients,
vertex-wise deformation map, and pixel-wise displacement
map, respectively (shown in Fig. 1). Concretely, we employ
two image translation networks [26] to estimate the corre-
sponding detail maps (deformation and displacement map),
and further employ them to generate the detailed face model
in a coarse-to-fine manner. Moreover, we introduce the 3D
priors of MF and HF details by fitting face scans with our
hierarchical representation to facilitate accurate and faith-
ful modeling. Inspired by [32], we propose a de-retouching
module to adaptively refine the base texture to overcome the
ambiguities between skin blemishes and illuminations. Ex-
tensive experiments show that our method outperforms the
existing methods on two large-scale benchmarks, exhibiting
excellent performance in terms of detail capturing and accu-
rate shape modeling. Thanks to the detail disentanglement
strategy and the guidance of detail priors, we extend HRN
to a multi-view fashion and achieve accurate FR from only
a few views. Finally, to boost the research of sparse-view
and high-fidelity FR, we introduce a high-quality 3D face
dataset named FaceHD-100.

Our main contributions in this work are as follows:
(A) We present a hierarchical modeling strategy and pro-
pose a novel framework HRN for single-view FR task. Our
HRN produces accurate and highly detailed FR results and
outperforms the existing state-of-the-art methods on two
large-scale single-view FR benchmarks.
(B) We introduce detail priors to guide the faithful modeling
of hierarchical details and design a de-retouching module to
facilitate the decoupling of geometry and appearance.
(C) We extend HRN to a multi-view fashion to form MV-
HRN, which enables accurate face modeling from sparse-
view images and outperforms the existing methods on two
large-scale multi-view FR benchmarks.
(D) To boost the research on sparse-view and high-fidelity
FR tasks, we introduce a high-quality 3D face dataset
FaceHD-100, containing 2,000 detailed 3D face models and
corresponding high-definition multi-view images.

2. Related Work
Single-View Face Reconstruction. Recovering 3D face
from a single image is an ill-posed problem, but the ad-
vent of the 3D morphable model (3DMM) [7, 38] has made
it possible. The 3DMM provides strong prior knowledge
and can represent complicated face geometry with low-
dimensional coefficients. In this formulation, current meth-
ods can be categorized into either optimization-based [6, 7,
24, 30, 49] or learning-based [14, 39, 42, 50]. Optimization-
based approaches usually need costly analysis-by-synthesis

processes and are sensitive to initialization, while learning-
based methods directly train neural networks to regress
the low-dimensional coefficients of 3DMM and recover 3D
face through efficient forward inference.

However, the original 3DMM models inherently lie in
low-dimensional linear space and lack fine details. Many
works [13, 18, 41, 44, 47] are proposed to overcome this
limitation. Tran et al. [44] present a nonlinear 3DMM
model and achieve more powerful representational abil-
ities. Sela et al. [41] employ image-to-image network
to generate pixel-based geometric representation for high
quality reconstructions. In addition to static face geom-
etry details, Feng et al. [18] present an animatable dis-
placement model to generate dynamic expression-depended
wrinkles. Yang et al. [47] predict displacement maps via
pix2pixHD network and combine them according to blend-
shape weights for dynamic details synthesis. Compared
with these approaches, our method further introduces facial
detail priors and can recover high fidelity facial details with
hierarchical geometry representations.
Multi-View Face Reconstruction. Traditional multi-view
stereo (MVS) methods [5,8,20] are designed for 3D recon-
struction given a set of multi-view images, but they heavily
rely on the precision of camera calibration, and can hardly
recover intact geometry in the sparse-view situation. To
address these problems, many face-specialized multi-view
reconstruction methods [4, 16, 25, 35, 36, 45, 46] are pro-
posed. Ramon et al. [36] introduce siamese neural networks
to extract relevant features from each view, and learn the
3D shape and the individual camera poses simultaneously.
Wu et al. [45] exploit both 3DMM and multi-view geo-
metric constraints by estimating the alignment loss between
multi-view inputs. Bai et al. [4] leverage non-rigid multi-
view stereo optimization to explicitly enforce multi-view
appearance consistency, which is able to capture medium-
level details. With the emergence of implicit 3D representa-
tion, Xiao et al. [46] propose to learn an implicit function to
recover detailed geometry from calibrated multi-view im-
ages, but the implicit function learning is time-consuming
which needs dozen of seconds and is sensitive to camera
count and pose estimation.

Rather than a specific design for multi-view inputs, our
single-view model can be easily transferred to sparse-view
face reconstruction task by adding hierarchical detail con-
sistency between different views. Our method is robust to
the calibration error of cameras thanks to the coarse-to-fine
learning scheme.

3. Methods

3.1. Overview

In this paper, we propose a novel hierarchical represen-
tation network for accurate and detailed face reconstruction
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Figure 2. Overview of the proposed hierarchical representation network (HRN).

from single image. Fig. 2 illustrates the overview of our
framework. We first employ 3DMM to predict a coarse
mesh and albedo (blue area in Fig. 2). Then we develop
a hierarchical modeling (Sec. 3.2) strategy to handle the
complex facial details in a coarse-to-fine manner (green and
purple area). To facilitate the accurate and faithful model-
ing of the hierarchical details, the 3D priors are incorporated
through adversarial and semi-supervised learning (Sec. 3.3).
Besides, we propose a de-retouching module (Sec. 3.4) to
fulfill better decoupling of the geometry and appearance,
alleviating the ambiguities between the various skin texture
and illuminations. Moreover, we extend our framework to
a multi-view fashion (Sec. 3.5) and introduce a high quality
3D face dataset (Sec. 3.6) to boost the research on sparse-
view face reconstruction. For simplification, we specify the
related loss functions and training strategy in each section.

3.2. Hierarchical Modeling

3DMM exhibit great performance in expressing various
shape of the face, while the low-dimensional representation
itself severely stem its learning on the details, leading to
the imperfect alignment to the face or the over-smoothed
results. Some methods extend 3DMM by introducing dis-
placement maps to reconstruct some details such as wrin-
kles and bumps. However, focused on the high-frequency
part, a simple displacement map still fails to handle some
larger-scale details, such as the contours of the jaw and
cheek. Based on such observation, we decouple the fa-
cial geometry into three components: (1) low-frequency
part, which provides the coarse shape roughly aligned to
the input face; (2) mid-frequency details, which describe
the details of the contour and local shape relative to the
low-frequency part; (3) and high-frequency details, such as
wrinkles, micro bumps, etc. As shown in the Fig. 1, the

scales decrease from the low-frequency part to the high-
frequency detail, while the fineness increases in turn.

We design the hierarchical representation to model
the above three components respectively. For the low-
frequency part, we adopt the BFM as our base model and
output the low-dimensional coefficients to fulfill a coarse
reconstruction of the input face. Then we introduce a three-
channel deformation map, which lies in the UV space and
indicates the offset of each vertex relative to the coarse re-
sult. Worked as the representation of the mid-frequency de-
tails, the deformation map provides a flexible way to manip-
ulate the geometries. We use the size of 64×64 to represent
the deformation map to balance the fineness and smooth-
ness of the mid-frequency details. For the high-frequency
details, we employ the displacement map following [18],
which is a one-channel map (256 × 256) denoting the ge-
ometry deformation along the direction of the normals. The
displacement map is converted to detailed normals used in
the rendering process in a pixel-wise manner to exhibit all
the tiny details, breaking the limitation of the vertex density
of the base model. Accordingly, we are enabled to describe
an arbitrary complex face with these representations.

As shown in Fig. 2, given a portrait image I , we firstly
utilize a regression network as the face analyzer to predict
the BFM coefficients and obtain the coarse aligned mesh
M0 and albedo A0 using the corresponding basis from the
3DMM database. Combined I and M0, we are able to ac-
quire the inpainted texture T in UV space by applying the
differentiable rendering with a coarse-to-fine strategy. And
we concatenate the position map P and T as the input of
the following modules for hierarchical details learning. We
adopt two pix2pix [26] networks to synthesize the defor-
mation map and displacement map in sequence. Note that,
considering the deformation map will change the facial ge-



ometry and lead to the misalignment between T and the
deformed mesh, we generate the realigned texture T

′
as the

input of second pix2pix network by projecting the three-
channel deformation map to the 2D space and transform it
to a reversal flow F to re-align T . Taking advantage of the
abundant details from T and the pixel-wise learning strat-
egy, we manage to obtain the accurate detail maps which are
further employed in a coarse-to-fine manner to generate the
detailed face mesh M1 and M2. Finally, combined with
the refined albedo generated from the de-retouching mod-
ule (Sec. 3.4), we accomplish detailed face reconstruction
from the single image.

Overall, the framework is trained in a self-supervised
manner guided with 3D detail priors learned from face scans
(Sec. 3.3). To reduce the training complexity, we adopt the
pre-trained encoder and MLP from the [14] as the face ana-
lyzer to predict the coefficients and generate the correspond-
ing P and T for the following details learning. The two im-
age translation networks are trained jointly and the related
loss functions are composed of three components:
Reconstruction Loss. The reconstruction loss is calculated
between the rendered face and the input face and consists
of the photometric loss Lphoto , perception-level loss Lper

and landmark loss Llan following [14]. Thanks to the de-
lighted albedo and the illumination system of 3DMM, the
photometric loss will enforce the deformation of the facial
geometry to fit the various shadows and highlight areas of
the input face. It is crucial that we apply the reconstruction
loss on both images rendered from the M1 and M2, which
benefit the disentanglement of the MF and HF details.
Details Loss. We apply the total variation loss Ltv [28]
to encourage the smoothness of the deformation map, and
use the L1 regularization loss Lreg to limit the scale of the
displacement map.
Contour-aware Loss. We propose a novel contour-aware
loss Lcon to fulfill accurate modeling of the face contour.
The Lcon works on M1 and aims to pull the vertices of
edge to align the face contour. As shown in Fig. 3, we
firstly project vertices of M1 into the image space. Then
we predict the face mask Mface using the pre-trained face
matting network [33] and implement post process to obtain
the left side and right side points for each row. Given a ver-
tex p and the corresponding projected point p′ on Mface,
we obtain the vector lp and rp (from p′ to the edge points
in the horizontal direction). Then Lcon can be describe as:

Lcon =
1

Np

∑

p∈M1

(f(p)1[y(p′) > δ]), (1)

f(p) = |h( lp · rp
max(||lp||, ||rp||)

+ λ)− λ|, (2)

where h is the ReLU function, and λ denotes a soft margin
relative to the face contour (λ = 0.01 as default), 1[y(p′) >

𝒍𝒑 𝒓𝒑
𝜆
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Figure 3. The details of the proposed contour loss. (a) input image,
(b) the projected vertices, (c) the predicted face mask.

δ] indicates whether p′ is on the lower part of the image (δ =
100 as default). As we can see, Lcon punish the vertices
outside the soft margin (such as the blue and gray points in
Fig. 3) of the face and pull them to the face contour, while
keeping the vertices inside the face intact. Combined with
Ltv of the deformation map, Lcon will avoid the unsmooth
effect near the face contour. Note that we only focus on
the lower part of the face contour to avoid the distraction
of the hair. Compared to the common segmentation loss,
Lcon gives a more straightforward direction for optimizing
the face contour and is easier for training. We conduct an
ablation study to reveal the effectiveness ofLcon in Sec. 4.4.

3.3. 3D Priors of Facial Details

Although facial details can be roughly learned from sin-
gle image using the reconstruction loss (Sec. 3.2), it suf-
fers from unreality and ambiguousness due to its ill-posed
essence. Adding additional regularization may help to nar-
row the solution space, but also lead to severe degradation
in detail accuracy and fidelity.

To address this problem, we exploit the 3D priors of
facial details derived from face scans and corresponding
multi-view images in our framework. Firstly, given an im-
age and its corresponding raw scan, we transform the raw
scan to align to the image in BFM space (the details can
be found in the supplemental files). Then we can obtain
the ground-truth deformation map and displacement map
for each image by fitting the image and scan using the loss
functions mentioned in Sec. 3.2 with additional supervision
on vertices distance following [3] . Thanks to the power-
ful hierarchical representation, the details of scans can be
accurately captured. See Fig. 4 for example.

We take advantage of the 3D priors of details on two
aspects. On the one hand, we develop two discriminators
and use the adversarial loss [27] Ladv mid and Ladv high to
supervise the domain distribution of the deformation map
and displacement map. On the other hand, we acquire the
paired data as mentioned above from 3D scans to conduct
supervised learning to guide the self-supervised learning in
Sec. 3.2. Specifically, we supplement the L1 loss Lmid and
Lhigh for the predicted deformation map and displacement
map respectively. Note that a mask is used in training to
remove the distraction of eyes and hair area from scans.
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Figure 4. The capturing process of the 3D priors of facial details.
(a) raw scans, (b) transformed scans that is aligned to the BFM
space, (c) the captured hierarchical representation.
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Figure 6. The pipeline of the proposed MV-HRN.

3.4. De-Retouching Module

A face image is the result of a combination of geome-
try, lighting, and face albedo. Prior works assume that the
face albedo is smooth and model it with the low-frequency
albedo from 3DMM. However, the actual skin texture is
full of high-frequency details such as moles, scars, freckles,
and other blemishes, which bring ambiguities to the geom-
etry details learning especially in the single view FR task.
Inspired by the [32], we propose a de-retouching module
(DRM), which aims to generate the face albedo with high-
frequency details and facilitate more precise decoupling of
geometry and appearance.

We collect 10, 000 face images from FFHQ [29], and
hire a team of professional image editors to process the im-

ages, with the goal of removing the skin blemishes and other
texture details while maintaining the shape-related content
such as wrinkles, bumps, etc. Then we transform the paired
images into the texture maps in UV space by applying the
process specified in Sec. 3.2 and train an image translation
network G to fulfill skin retouching. Given the re-aligned
texture T

′
, we firstly employG to remove its texture details

and get T0, as shown in Fig. 5. We aim to bake the texture
details into the coarse albedo A0 to obtain the improved
albedo A

′
for rendering. We make an assumption that the

shading from A0 to T0 should be consistent with the one
from A

′
to T

′
, as:

T0 = A0 � S, (3)

T
′
= A

′ � S, (4)

where S denotes the shading map, � denotes element-wise
matrix multiplication. Then we can solve the equations and
obtain A

′
as:

A
′
= A0 �B ≈ A0 �

T
′
+ φ(T0)

T0 + φ(T0)
, (5)

φ(T0) =
1

T0�T0�T0

ε + ε
, (6)

where φ(T0) avoids the value explosion near 0 and ε =
1e−6 as default. Compared to A0, the de-retouched albedo
A′ contains more high-frequency texture details, which al-
leviate the ambiguities between geometry and appearance,
especially in single view FR task.

3.5. MV-HRN

Thanks to the hierarchical modeling and the 3D priors
guidance, we can easily adapt the HRN to a multi-view
fashion to fulfill precise modeling of the global facial geom-
etry with only a few views by adding the geometry consis-
tency between different views. Fig. 6 shows the pipeline of
MV-HRN. We assume that the low-frequency identity part
and the mid-frequency details are consistent between dif-
ferent views, while the lighting, expression, and HF details
should be view-dependent to overcome the disturbance.
Therefore, we develop a canonical space, which contains
the shared identity coefficient and deformation map that are
initialized by averaging all the single-view results, to repre-
sent the shared intrinsic face shape. Then other BFM coeffi-
cients and the displacement map of each view are utilized to
dependently model the pose, lighting, expression and high-
frequency details. Then we apply the loss functions men-
tioned in Sec. 3.2 and Sec. 3.3 to iteratively optimize all the
coefficients and detail maps. Through the fitting process,
the face shape is gradually restricted to a smaller and more
accurate space under the supervision of different views. Ex-
tensive experiments show that MV-HRN achieves accurate
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Figure 7. An example from the FaceHD-100 dataset.

reconstruction given only a few (2 ∼ 5) views of images in
a short time (less than one minute).

3.6. FaceHD-100 Dataset

To boost the research of face reconstruction from sparse-
view images, we introduce a high-quality 3D face dataset
FaceHD-100, which consists of 2,000 high-definition 3D
mesh and corresponding multi-view images from 100 sub-
jects. The data is captured by a multi-view 3D reconstruc-
tion system, which is composed of 9 DSLR cameras and 8
LED lights. The 9 cameras are evenly distributed in front
of and to the side of the face, and each provides 8K images
for geometry and texture reconstruction. The capturing sub-
jects include 50 males and 50 females, and mostly are from
Asia. The ages of these subjects are normally distributed
from 16 to 70 years old. For each person, we follow [1]
and ask them to perform 20 expressions including the neu-
tral expression for capturing. Fig. 7 gives an example of
FaceHD-100, which shows the high quality of the recon-
structed geometry and texture.

4. Experiments

4.1. Implementation Details

Training Data. The training data of the proposed model
is composed of two parts: 2D in-the-wild images and 3D
face scans with corresponding multi-view images. For the
former, we collect in-the-wild face images from multiple
sources following [14]. For the latter, the data is collected
from FaceScape [48], ESRC [17] and FaceHD-100. To be
specific, we split 359 samples of FaceScape into training
(309 subjects) and testing sets (50 subjects), considering
the balance of gender and age. The ESRC is also split in
the same way as [4] and the whole FaceHD-100 dataset is
used for training. In total, we collected ∼9K scans from
nearly 500 subjects of different ethnicities. The majority of
subjects have 3D scans for at least 8 different expressions.
Then we process all the scans and corresponding multi-view
images in the way shown in Fig. 4 to generate the ground-
truth deformation maps and displacement maps for each im-
age. In the end, we collected∼260K in-the-wild images for
self-supervised training and ∼150K lab images with corre-

(a) Input (e) DECA (f) Ours(c) Deep3D(b) SADRNet (d) Pix2Vertex

Figure 8. The single-view qualitative comparison on FFHQ (first
three rows), REALY (fourth row), and FaceScape (last row).
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Figure 9. The multi-view qualitative comparison on FaceScape
and ESRC datasets.

sponding ground-truth details map for supervised training.
The input images are preprocessed following [14].

Training Strategy. Firstly, we employ the pretrained R-
Net from [14] as our face analyzer to predict the 3DMM
coefficients, position map and texture map as mentioned in
Sec. 3.2 for the following training. We use the paired texture
maps mentioned in Sec. 3.4 to train the de-retouching mod-
ule. Finally, we fix the parameters of the face analyzer and
de-retouching module and train the whole network with the
input of face images, position maps and texture maps. We
train our model using the Adam optimizer with a batch size
of 4, an initial learning rate of 1e-4, and 800K iterations.
Note that the model is trained alternately with in-the-wild
images and lab images in a self-supervised and supervised
manner respectively. More details about the parameters and
training setting are specified in supplementary materials.



4.2. Qualitative Comparison

We evaluate our model with four SOTA methods:
SADRNet [39], Deep3D [14], Pix2Vertex [41], and DECA
[18] for single-view 3D FR task. SADRNet tackles 3D
dense face alignment and face reconstruction simultane-
ously with a self-aligned dual regression framework, and
Deep3D leverages hybrid loss function to train CNN for
3DMM coefficients regression in a weakly-supervised man-
ner. With the goal of adding more expressiveness and
details, Pix2Vertex utilizes the Image-to-Image translation
network to provide high-quality reconstructions under ex-
treme expressions, while DECA presents an animatable dis-
placement model to generate dynamic expression-depended
face details. To make a fair comparison, we use their pub-
licly released models and codes, and conduct experiments
on FFHQ, REALY, and Facescape datasets.

The comparison results of the single-view reconstruction
scenario are shown in Fig. 8. Since Deep3D only recon-
structs faces using predicted 3DMM coefficients, the results
are in low-dimensional space and lack high-frequency de-
tails. Although SADRNet tries to regress face shape de-
formation separately, the high-frequency details are still ig-
nored in learning because of their minority. Pix2Vertex and
DECA provide more fine details, such as blemishes and
wrinkles. However, Pix2Vertex brings artifacts at the same
time due to its unrestricted manner, and DECA cannot ac-
curately recover face identities and expressions, resulting in
similar wrinkles on the forehead among various faces. By
contrast, our proposed method can produce high-fidelity 3D
faces with expressive details, which are extremely consis-
tent with the original input images.

In the multi-view scenario, we test the performance of
DFNRMVS [4], MVFNet [45] and the proposed model
given 3-view or 2-view images from FaceScape and ESRC
datasets. As illustrated in Fig. 9, our model outperforms the
other two methods in terms of fidelity, details and geometry
accuracy, proving that our framework can be well general-
ized to both single-view and multi-view tasks.

4.3. Quantitative Comparison

Three public datasets are employed to quantitatively
evaluate our method with several state-of-the-art ap-
proaches. Specifically, we choose FaceScape [48] dataset
for both single-view and multi-view evaluation, and addi-
tionally use REALY [11] and ESRC [17]datasets for single-
view and multi-view respectively. To evaluate the geometry
accuracy of single-view face reconstruction, we use Cham-
fer Distance (CD) and Mean Normal Error (MNE) on the
FaceScape dataset following FaceScape benchmark [48],
while leveraging average Normalized Mean Square Error
(NMSE) of different face regions on REALY dataset, which
applies region-wise alignment and is more accurate for
shape error computing.

(a) Input (b) Base model (c) w/o DPM (d) w/o DFM (e) Ours

Figure 10. Ablation study toward hierarchical modeling on FFHQ.

Table 1 shows the quantitative comparison of single-
view reconstruction. Our approach outperforms other meth-
ods on FaceScape-wild and REALY datasets, and achieves
SOTA performance on the FaceScape-lab dataset. We find
that our side-view metric is even better than the frontal-
view on REALY dataset, we speculate that the slightly side-
view images provide more information about mouth/node
heights, which is beneficial to geometry prediction.

For multi-view reconstruction evaluation, as guided by
NoW benchmark [40], we firstly choose 7 face landmarks
for each predicted mesh and then apply rigid alignment to
ground truth mesh, and report their scan-to-mesh distances.
Due to that MVFNet public model cannot handle 2-views
images, we only use it in FaceScape dataset testing. The
results in Table 2 show that our approach performs better
against MVFNet and DFNRMVS with the lowest recon-
struction errors.

Table 1. Single-view quantitative comparison. REALY-F and
REALY-S denote frontal-view and side-view reconstruction on
REALY benchmark respectively.

Methods
FaceScape-wild FaceScape-lab REALY-F REALY-S
CD MNE CD MNE NMSE NMSE

(mm) (rad) (mm) (rad) (mm) (mm)

Deep3D 3.8 0.092 5.28 0.118 1.657 1.691
MCGNet 3.22 0.077 4.00 0.093 1.774 1.787
PRNet 3.47 0.123 3.56 0.126 2.013 2.032
SADRNet 7.12 0.123 6.75 0.133 1.913 1.958
DECA 3.31 0.089 4.69 0.108 2.210 2.261
3DDFA 3.00 0.080 3.60 0.096 1.926 1.943
Ours 2.91 0.065 3.67 0.087 1.537 1.468

Table 2. Multi-view quantitative comparison. We only report
MVFNet performance on FaceScape because its released model
cannot process two-view inputs.

Methods
FaceScape (3 views) ESRC (2 views)

Median Mean Std Median Mean Std
(mm) (mm) (mm) (mm) (mm) (mm)

MVFNet 1.76 2.12 1.66 N.A. N.A. N.A.
DFNRMVS 1.79 2.41 2.61 1.59 2.13 2.29
Ours 1.13 1.51 1.79 1.29 1.69 1.72

4.4. Ablation Study

In order to verify the rationality and effectiveness of
our network design, we conduct extensive ablation exper-
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Figure 11. Ablation study toward contour loss on FFHQ.

(b) w/o De-Retouching(a) Input (c) w/o 3D priors (d) Ours

Figure 12. Ablation study toward de-retouching module and 3D
detail priors on FFHQ.

Base model HRM Lcon detail priors DRM CD(mm) MNE(rad)
X 3.8 0.092
X X 3.34 0.081
X X X 3.18 0.079
X X X X 2.9 0.067
X X X X X 2.91 0.065

Table 3. Quantitative ablation experiments on FaceScape-wild.
HRM denotes the hierarchical representation modeling.

Methods 2 views 3 views 4 views 5 views naive version (5 views)
Ours 1.17 1.13 1.11 1.10 1.23

Table 4. Quantitative ablation study toward sparse-view recon-
struction on FaceScape. Only median distance(mm) is reported.

iments on FFHQ and FaceScape. Table 3 shows the quan-
titative results on FaceScape-wild benchmark. As revealed
in the table, compared to the base 3DMM, the hierarchical
modeling strategy brings a huge improvement (∼0.5mm).
The contour loss produces 0.16mm improvement. 3D pri-
ors of details play a key role in our framework, achieving
∼0.3mm improvement. The quantitative contribution of the
de-retouching module is minor, while the following quali-
tative results on FFHQ prove its effectiveness.
On hierarchical modeling. To demonstrate the neces-
sity of the hierarchical modeling, we employ the deforma-
tion map (DFM) and displacement map (DPM) respectively
(columns c, d in Fig. 10) to solely learn the overall facial
details and compare the results. Without DPM, the DFM
exhibit the capability of capturing high-frequency details

to a certain extent. However, the performance is limited
by the mesh density and the trade-off between the MF de-
tails and HF details. In contrast, the DPM is more effective
in learning some micro details, but it fails to handle some
larger-scale deformation. Apparently, by introducing the hi-
erarchical modeling strategy, the proposed method achieves
more accurate and detailed reconstruction.
On contour-aware loss. The contour-aware loss Lcon aims
to enhance the reconstruction accuracy of the facial con-
tours. As shown in Fig. 11, the network with Lcon exhibit
superior performance on learning the face contour com-
pared with the one without Lcon or with BCE loss.
On 3D priors of facial details. The introduced 3D priors
provide the geometry distribution of the real facial details,
which guide the model to achieve accurate reconstructions.
As shown in Fig. 12, the network without 3D priors pro-
duces some unrealistic details. In contrast, the reconstruc-
tion results with 3D priors are smoother and more faithful.
On de-retouching module. The de-retouching module is
proposed to achieve better decoupling of the facial appear-
ance and geometry. As shown in Fig. 12, without DRM, the
model is more susceptible to the distraction of various skin
textures and yields some nonexistent details.
On sparse-view reconstruction. We test the performance
of MV-HRN on FaceScape given different numbers of input
views. As Shown in Table 4, MV-HRN achieves compara-
ble results given only two views for input. With the increase
of the number of views, the performance is gradually better,
showing the ability of MV-HRN to aggregate multi-view
information. Besides, we compare MV-HRN with its naive
version (simply average the results of all views) and the re-
sults demonstrate the effectiveness of the network design.

4.5. Extention work and Limitation

Due to the limited paper space, more extension work
(such as high-quality head reconstruction) and limitation of
our method are provided in the supplementary materials.

5. Conclusion
In this paper, we propose a novel hierarchical represen-

tation network(HRN) for accurate and detailed face recon-
struction from in-the-wild images. Specifically, we achieve
facial geometry disentanglement and modeling by hierar-
chical representation learning. The 3D priors of details
are further incorporated to improve the reconstruction re-
sults in accuracy and visual effects. Besides, we propose
a de-retouching network, which alleviates the ambiguities
between geometry and appearance. Moreover, we extend
HRN to a multi-view fashion and introduce a high-quality
3D face dataset FaceHD-100 to boost the research of sparse-
view FR. Extensive experiments reveal that our method
achieves superior performance to the existing methods in
terms of accuracy and visual effects.
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In this document, we present some additional statistics
and more examples of the FaceHD-100 dataset in Sec. 1,
ethics guidelines in Sec. 2, some implementation details in
Sec. 3, head reconstruction as the extension work of our
HRN (MV-HRN) in Sec. 4, more visualization results in
Sec. 5, and discussions about the limitations of the proposed
method and future work in Sec. 6.

1. The FaceHD-100 Dataset

This section provides more information about the
FaceHD-100 dataset. Fig. 1 shows the age and gender distri-
bution of the dataset, in which the ages of men and women
are mainly concentrated between 17-35 years old, and the
overall distribution is close to normal. In Fig. 2, we give
an example of the 9-view face images from FaceHD-100,
which shows the position distribution of the 9 cameras in
our acquisition system. Fig. 3 presents some 9-view images
and raw scans of different expressions from FaceHD-100.
While capturing, each subject was asked to wear a hair cov-
ering to prevent hair from interfering.

We have signed an authorization agreement with each
capturing subject, who grants us the exclusive rights to dis-
tribute, perform, and use the captured data within the scope
of academic research (including for paper publication and
representation) and legitimate business. And we will re-
lease the dataset for research purposes only.

2. Ethics Guidelines

In addition to FaceHD-100, other face datasets we use in
the main paper and supplementary materials are licensed,
granting us the right to use the data for research purposes,
including publication of papers. Moreover, the face exam-
ples shown in the paper have also obtained the special au-
thorization of the capturing subjects or followed the pub-
lishable list of the corresponding dataset.
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Figure 1. The age and gender distribution of the FaceHD-100
dataset.

Figure 2. An example of the 9-view face images from the FaceHD-
100 dataset.
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Figure 3. Some examples of different expressions from the FaceHD-100 dataset.
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Figure 4. The pipeline of acquiring ground-truth deformation map and displacement map from a single image and the corresponding raw
scan.

3. Implementation Details

3.1. Acquiring Ground-truth Detail Maps

As mentioned in Sec.3.3 in the main paper, to utilize the
3D data in our framework, we ought to transform the raw
scan to align to the image in BFM space. Fig. 4 shows the
pipeline of how we implement the transformation and ac-
quire the ground-truth detail maps for training. Given a face
image and its corresponding raw scan, we firstly employ the
base model to predict a coarse mesh M0 that is aligned to

the image in BFM space. Then we obtain 7 landmarks from
the raw scan and M0 respectively to achieve rough align-
ment [8], and the rigid ICP [9] algorithm is further used to
improve the alignment between the raw scan and M0. Once
we get the aligned scan, we are able to use the hierarchical
representation to fit the scan as mentioned in Sec.3.3 in the
main paper, and finally acquire the ground-truth deforma-
tion and displacement map for the input image (a mask is
used in training to remove the noises of eyes, nose and hair
area from raw scans). Note that since the base model is pre-
trained in our network, we only optimize the detail maps
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Figure 5. The pipeline of generating a new head model from the BFM model and FLAME model.

MV-HRN deform
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Figure 6. Simplified head reconstruction process. (a) Input multi-
view images. (b) Predicted coarse head mesh, face, and hair de-
formation map. (c) deformed mesh.

and freeze the blendshape coefficients in the fitting process.

3.2. Loss Functions

As described in Sec.4.1 in the main paper, the training
data is composed of two types of images: in-the-wild im-
ages and in-the-lab images. The former is used for training
in a self-supervised manner, while the latter is combined
with ground-truth detail maps generated following Sec. 3.1
and used for training in a supervised manner.

We use R1 and R2 to indicate the face rendered from
M1 and M2 in Fig. 2 (main paper) respectively. Overall,
the loss functions that we utilize for training consist of :
(i) two photometric losses [1] Lphoto1 (between I and R1)
and Lphoto2 (between I and R2);
(ii) two perception-level losses [1] Lper1 (between I and
R1) and Lper2 (between I and R2);
(iii) a landmark loss [1] Llan (between I and R2);
(iv) a total variation loss [4] Ltv for the deformation map;
(v) an L1 regularization loss Lreg for the displacement
map;
(vi) a contour-aware loss Lcon between face mask and M1;
(vii) two adversarial losses [3] Ladv mid and Ladv high for
the deformation map and displacement map respectively;
(viii) an L1 loss Lmid for the deformation map and an L1
loss Lhigh for the displacement map in supervised training.

In summary, the joint loss for self-supervised and super-
vised training can be written as:

Lself = λ1(Lphoto1 + Lphoto2) + λ2(Lper1 + Lper2)

+ λ3Llan + λ4Ltv + λ5Lreg + λ6Lcon

+ λ7(Ladv mid + Ladv high),
(1)

Lsuper = Lself + λ8(Lmid + Lhigh), (2)

where λ1 = 1.9, λ2 = 0.2, λ3 = 1.6e− 4, λ4 = 5e3, λ5 =
10, λ6 = 20, λ7 = 0.2 and λ8 = 1 as default. We al-
ternately train the network with Lself for one iteration and
with Lsuper for one iteration.

4. Head Reconstruction
Due to the lack of completeness, the application sce-

narios of face reconstruction are often limited. There-
fore, we extend our method and make a small modifica-
tion to MV-HRN to achieve high-quality head reconstruc-
tion. Firstly, we combine BFM with FLAME and generate
a new head 3DMM model. Fig. 5 shows the pipeline. Given
a face model from BFM database, we firstly use a template
FLAME model and apply the flame-fitting [6] algorithm to
fit the face model. Then through a series of cropping and
merging operations, we can get the complete head model
that combines BFM and FLAME. By applying the process
above to the mean model, 80 identity blendshapes and 64
expression blendshapes of BFM, we can obtain a new head
3DMM, which shares the same group of coefficients with
BFM. We continue to use the albedo basis of BFM for the
face area of the new head models. Since we will only cal-
culate the photometric loss for the face area, the albedo of
the rest area of the head model is set to a fixed value. In
addition, we unwrap the new head model and recalculate a
new set of UV coordinates.

To adapt the new head model, we modify the MV-HRN
by splitting the deformation map into the face deformation
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Figure 7. Some head reconstruction results of our method on selfie data.

map and hair deformation map, where the former is used to
deform the face region and the latter is used to deform the
hair region. Besides, we replaced the face mask in contour-
aware loss with the head mask, which is predicted by a pre-
trained head segmentation network [7]. By using the face
and hair deformation map to fit the head mesh to the head
masks, we can get a head model that is well aligned to the
input multi-view head images. Note that since there are no
3D priors to guide the deformation of the hair region, we
apply a larger weight of Ltv for the hair deformation map
to ensure the smoothness of the hair region. Fig. 6 shows
a simplified process of reconstructing the head mesh us-
ing MV-HRN. For the texture, we firstly acquire the coarse
texture maps from each view by employing the differen-
tiable rendering [5] mentioned in Sec. 3.2 (main paper).
Then we blend the multi-view textures and a template head
texture following [2] to obtain the complete head texture
map. Combining the predicted head mesh and the head tex-
ture map, we achieve high-quality head reconstruction from
sparse-view images. Fig. 7 shows some head reconstruction

results of our method on selfie data.
Due to the deficiency of prior information on hair regions

and the limitation of mesh density, our head reconstruction
is currently only suitable for handling portraits with simple
hairstyles.

5. More Visualization Results
We provide more qualitative comparison of single-view

face reconstruction results in Fig. 8, Fig. 9, and Fig. 10.
Our approach consistently outperforms other methods on
FFHQ, REALY and Facescape datasets with high-fidelity
and fine details.

6. Limitations and Future Work
Limitations. We summarize two limitations of our method.
On one hand, the generated facial details of our method are
static and cannot vary with expression. One possible way is
to collect multiple expressions of the same person, and then
use HRN to obtain mid- and high-frequency details from
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Figure 8. More visual comparisons on FFHQ dataset.

each expression and build a set of mid- and high-frequency
detail blendshapes. Finally, we are enabled to use blend-
shape coefficients to generate dynamic facial details.

On the other hand, considering the pixel-wise learning
strategy and the powerful representation ability, our pro-
posed method cannot handle severe occlusions well. Fig. 11
presents some visual results of the proposed HRN on oc-
cluded face images from FFHQ. Our method exhibits ro-
bustness to some images with slightly occluded faces (first

two rows) but produces inaccurate results for heavily oc-
cluded faces (last three rows).
Future Work. Beyond addressing the limitations discussed
above, we will further extend our method to achieve ac-
curate, high-fidelity and animatable head avatar genera-
tion from in-the-wild images for future work, conquer-
ing some challenging problems (such as modeling complex
hairstyles).
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Figure 9. More visual comparisons on REALY dataset.
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Figure 10. More visual comparisons on FaceScape dataset.
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Figure 11. Visual results of our method on some occluded face images from FFHQ.
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